HWR 417A/517A – Fundamentals of Water Quality – Fall 2011

These texts will be supplemented with additional material from other sources.

Instructor Dr. Thomas Meixner
 Room 202 Harshbarger
 626-1532 (office)
 tmeixner@hwr.arizona.edu

Office Hours: MWF 10 AM – 1PM or by appointment
Course location: Harvill 204
Online content: http://d2l.arizona.edu (you will need your UA Net ID and password)
Class meetings: class will meet MWF at 1PM
Final Exam

Course Goals:
1) A qualitative understanding of the physical and chemical controls on waters composition.
2) Develop a quantitative framework from which to attack geochemical problems
3) Learn the fundamental laws of equilibrium geochemistry.
4) Be briefly introduced to the kinetic concepts that govern rate limited processes.
5) Learn how to apply chemical concepts to the broader understanding of hydrology.

Grading: Undergraduate

3 Mid-terms 30%
Homework 30%
Presentation 10%
Final exam 30%

Grading: Graduate

3 Mid-terms 30%
Homework 25%
Paper Review 10%
Presentation 10%
Final exam 25%

Paper Review/Presentation: You are charged with finding one peer-reviewed article of interest to you. Chemical concepts must play a central role in the discovery process that the paper describes. Article can have been published in any peer-reviewed journal. You MUST pass this article by me for my APPROVAL before moving forward on writing your review paper and preparing your presentation. I prefer to receive articles electronically by PDF. Graduate students must both make a presentation and write a review. Undergraduates need only make a
presentation. All homework and exams will have work that graduate students must do and that undergraduates may do.
August 22nd Introduction and Water Origins – Paper review *AP1-10*
August 24th Tracers and mixture modeling *Supplemental*
August 26th Introduction to Isotopes and Stable Isotopes of Water *AP 31-41*
August 29th Isotopic Fractionation *AP31-41* HW 1 due
August 31st Introduction to Radioactive Decay *AP 72-75*
September 2nd Radiogenic Isotopes in Hydrology *AP218-231*
September 7th Chemical Thermodynamics *AP-1-21*
September 9th Equilibrium Chemistry *AP 119-123* HW 2 due
September 12th Activity coefficient Ionic Strength *AP 123-127*
September 14th Aqueous Complexes; *AP 127-131*
September 16th Saturation Indices and ΔG Uncertainty *AP 131-132*
September 19th **Computer Lab Harshbarger 110** PHREEQC *AP 135-142*
September 21st **Mid term #1**
September 23rd Carbonate system (Sign-Ups) *AP 175-228* HW3 due
September 26th Carbonate System: pH and carbonate equilibrium coefficients *AP 175-183*
September 28th Carbonate System: Titration and Alkalinity Open-Closed Systems *AP*
September 30th Chemical Kinetics *AP 152-169, AP 210-218, H43-61*
October 3rd Chemical Kinetics *AP 152-169, AP 210-218, H43-61* HW4 due
October 5th Weathering: Budgets *AP 375-394*
October 7th Weathering: Sierra Nevada Case Study *Supplement on d2l*
October 10th Weathering: Kinetics and Thermodynamics *AP 395-409* Clays: HW5 due
October 12th PHREEQC for weathering
October 14th **Student Presentations**
October 17th Mid-Term #2
October 19th Clays: Colloids, Surface Area, *AP 241-251,252-311* HW6 due
October 21st Student Presentations
October 24th CEC, Isotherms *AP 311-344*
October 26th Redox: Introduction *AP 415-438*
October 28th Student Presentations
October 31st Redox Conditions and Eh-pH diagrams *AP 439-478* HW7 due
November 2nd Redox Conditions - Role of Hydrology *Supplement on d2l*
November 4th Student Presentations
November 7th Organics Contaminants *AP 489-534*
November 9th Organics in Multi-Phase Systems *outside reading* HW8 due
November 14th Fugacity Approach *outside reading*
November 16th Brines and Acid Rain *outside reading AP 405-410 AP 26-31*
November 18th Student Presentations
November 21st Mid Term #3
November 23rd No Class
November 28th Integrating Tracers and processes *Supplemental reading* HW9 due
November 30th Student Presentations
December 2nd Student Presentations HW10 due
December 5th Integration San Pedro
December 7th Final review
December 12th Final exam 10:30 AM same place