Challenges and limitations of hydroclimatological forecasting and the relative role of its three pillars: models, observations, and parameterization

In response to society’s need for more effective tools to address hydrologic hazards and manage water resources systems, engineers and scientists have become more reliant on the use of predictive models and stochastic methods. Depending on the problems, the hydrometeorological information needed may range from hourly forecasts (i.e., in the case of flash floods) to seasonal to inter-annual (i.e., in the case of reservoir operation), and to decadal to century (i.e., in the case of long range water supply planning and structural designs). While there is a rich body of literature reporting on progress related to both “weather-scale” and “climate-scale” hydrologic predictions, many challenges face the research community attempting to extend the lead time and accuracy of predictions.

More specifically, despite progress in each of the three pillars of hydrometeorological prediction system (models, observations, and parameterization) over the past several decades, improvements in the overall forecast quality are yet to live up to users’ expectations. This presentation will provide a summary of both the progress and the related challenges. It will be a personal reflection of over 3 decades (20 years of which was at UA) of research and experience with hydrologic modeling and involvement with a number of international initiatives.

Contact: Erma Santander at 621-7120 or ermasan@email.arizona.edu